Research Article


2010, 3: 459–471


Interplay of Adsorbate–Adsorbate and Adsorbate–Substrate Interactions in Self-Assembled Molecular Surface Nanostructures

Joachim Schnadt1,2 (), Wei Xu1,3, Ronnie T. Vang1, Jan Knudsen1, Zheshen Li4, Erik Lgsgaard1, and Flemming Besenbacher1

View Author's information

1 Interdisciplinary Nanoscience Center, iNANO, and Department of Physics and Astronomy, Aarhus University, Building 1521, Ny Munkegade, 8000 Aarhus C, Denmark
2 Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden
3 Shanghai Key Laboratory for Metallic Functional Materials, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and Engineering, Tongji University, 1239 Si Ping Road, Shanghai 200092, China
4 Institute for Storage Ring Facilities, Aarhus University, Building 1525, Ny Munkegade, 8000 Aarhus C, Denmark

Keywords: Molecular self-assembly, hydrogen bonding, scanning tunnelling microscopy, X-ray photoelectron spectroscopy
Full article PDF
Cite this article(Endnote)
Share this article

views: 167

Citations: 0

  • Abstract
  • References
The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 °C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate–adsorbate and adsorbate–substrate interactions and that kinetic factors play an important role.
Related Article
Cite this article

Interplay of Adsorbate–Adsorbate and Adsorbate–Substrate Interactions in Self-Assembled Molecular Surface Nanostructures. Nano Res. 2010, 3: 459–471

Download citation