Research Article


2013, 6(5): 303–311


Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact

Alexander Nerowski1, Joerg Opitz1,2, Larysa Baraban1 (),and Gianaurelio Cuniberti1,3

View Author's information

1 Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, Dresden 01062, Germany
2 Fraunhofer Institute for Non-Destructive Testing, Dresden 01109, Germany
3 Division of IT Convergence Engineering, POSTECH, Pohang 790-784, Republic of Korea

Keywords: KEYWORDS bottom-up growth, directed electrochemical nanowire assembly (DENA), metal nanowires, nanostructuring, nanoelectronics, local electric field
Full article PDF
Cite this article(Endnote)
Share this article

views: 147

Citations: 0

  • Abstract
  • References
  • Electronic Supplementary Material
ABSTRACT We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtCl6 solution. The influence of the concentration of the platinum- containing acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.
Related Article
Cite this article

Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact. Nano Res. 2013, 6(5): 303–311

Download citation