Research Article

|

2014, 7(9): 1319–1326

|

https://doi.org/10.1007/s12274-014-0496-x

SnO2–reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability

Lei Li1,§, Anton Kovalchuk1,§, and James M. Tour1,2,3 (*)

View Author's information

1 Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
2 Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, USA
3 Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA § The authors contributed equally to this work.

Keywords: lithium ion battery, tin oxide, graphene oxide nanoribbons, energy storage
Full article PDF
Cite this article(Endnote)
Share this article
Metric

views: 149

Citations: 0

  • Abstract
  • References
  • Electronic Supplementary Material
A nanocomposite material of SnO2–reduced graphene oxide nanoribbons has been developed. In this composite, the reduced graphene oxide nanoribbons are uniformly coated by nanosized SnO2 that formed a thin layer of SnO2 on the surface. When used as anodes in lithium ion batteries, the composite shows outstanding electrochemical performance with the high reversible discharge capacity of 1,027 mAh/g at 0.1 A/g after 165 cycles and 640 mAh/g at 3.0 A/g after 160 cycles with current rates varying from 0.1 to 3.0 A/g and no capacity decay after 600 cycles compared to the second cycle at a current density of 1.0 A/g. The high reversible capacity, good rate performance and excellent cycling stability of the composite are due to the synergistic combination of electrically conductive reduced graphene oxide nanoribbons and SnO2. The method developed here is practical for the large-scale development of anode materials for lithium ion batteries.
Related Article
Cite this article

SnO2–reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7(9): 1319–1326 https://doi.org/10.1007/s12274-014-0496-x

Download citation