Research Article

|

2016, 9(9): 2662–2671

|

https://doi.org/10.1007/s12274-016-1153-3

Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction

Wei Ye, Chenhao Ren, Daobin Liu, Chengming Wang, Ning Zhang, Wensheng Yan, Li Song, and Yujie Xiong (*)

View Author's information

Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China

Keywords: hydrogen evolution,molybdenum disulfide,charge transport,charge polarization,nanowire
Full article PDF
Cite this article(Endnote)
Share this article
Metric

views: 114

Citations: 0

  • Abstract
  • References
  • Electronic Supplementary Material
Semiconducting 2H-MoS2 with high chemical stability is a promising alternativeto the existing electrocatalysts for the hydrogen evolution reaction (HER);however, the HER performance largely suffers from the limited number of activeS sites and low mobility for charge transport. In this work, we demonstrate thatthe limitations of 2H-MoS2 for the HER can be overcome by forming hybridstructures with metallic nanowires. Taking the integration with Pd as a proofof-concept, we show with solid experimental evidence that the one-dimensionalstructure of metallic nanowires facilitates electron transport to active S sites,while the interfacial charge polarization between MoS2 and Pd increases theelectron density of the S sites for improved activity. As a result, the hybridstructure exhibits a current density of 122 mA·cm−2 at −300 mV versus RHE anda Tafel slope of 44 mV·decade−1 with excellent durability, well exceeding theperformances of bare 2H-MoS2 and metallic 1T-MoS2. This work provides insightsinto electrocatalyst design based on charge transport and polarization, which canbe extended to other hybrid structures.
Related Article
Cite this article

Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Res. 2016, 9(9): 2662–2671 https://doi.org/10.1007/s12274-016-1153-3

Download citation