Research Article

|

2017, 10(11): 3680–3689

|

https://doi.org/10.1007/s12274-017-1578-3

Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics

En Ning Saw, Markus Kratz, and Kristina Tschulik (*)

View Author's information

Micro- & Nano-Electrochemistry and Centre for Electrochemical Sciences (CES), Ruhr-University Bochum, Bochum D-44780, Germany

Keywords: single-particle reactivity, electrochemical kinetics, nano-impact method, silver, reaction mechanism
Full article PDF
Cite this article(Endnote)
Share this article
Metric

views: 164

Citations: 0

  • Abstract
  • References
  • Electronic Supplementary Material
ABSTRACT Single-nanoparticle electrochemistry has been established as a tool to characterize various nanomaterials based on the charge passed during their random impact at an electrode. Here it is demonstrated that the duration and shape of the resulting current peak can be used to quantify the reaction kinetics on a single-particle basis. Both the chemical rate constant and reaction mechanism for oxidation of single nanoparticles in different electrolytes can be determined directly from the duration of the current signal recorded in high-speed, highsensitivity current measurements. Using 29-nm-sized Ag particles in four different electrolytes as a proof of concept for this general approach, hitherto inaccessible insights into single-particle reactivity are provided. While comparable rate constants were measured for the four electrolytes at low overpotentials, transport-limited impacts at high overpotentials were found to depend strongly on the type and quantity of anions present in solution.
Related Article
Cite this article

Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics. Nano Res. 2017, 10(11): 3680–3689 https://doi.org/10.1007/s12274-017-1578-3

Download citation