Research Article

|

2019, 12(6): 1301–1305

|

https://doi.org/10.1007/s12274-018-2212-8

Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T phase on 4H/fcc-Au nanorods for hydrogen evolution

Zhengqing Liu1,2, Xiao Zhang2, Yue Gong3,4, Qipeng Lu2, Zhicheng Zhang2, Hongfei Cheng2, Qinglang Ma2, Junze Chen2, Meiting Zhao2, Bo Chen2, Ye Chen2, Xue-Jun Wu2, Pengfei Yin2, Lin Gu3,4,5 (*), Yaping Du1 (*), and Hua Zhang2 (*)

View Author's information

1 School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
2 Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
5 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

Keywords: MoS2 monolayers, semimetallic 1T´ phase, 4H/fcc-Au nanorods, hydrogen evolution
Full article PDF
Cite this article(Endnote)
Share this article
Metric

views: 437

Citations: 0

  • Abstract
  • References
  • Electronic Supplementary Material
Controlled synthesis of transition metal dichalcogenide (TMD) monolayers with unusual crystal phases has attracted increasing attention due to their promising applications in electrocatalysis. However, the facile and large-scale preparation of TMD monolayers with high-concentration unusual crystal phase still remains a challenge. Herein, we report the synthesis of MoX2 (X = Se or S) monolayers with high-concentration semimetallic 1T´ phase by using the 4H/face-centered cubic (fcc)-Au nanorod as template to form the 4H/fcc-Au@MoX2 nanocomposite. The concentrations of 1T´ phase in the prepared MoSe2 and MoS2 monolayers are up to 86% and 81%, respectively. As a proof-of-concept application, the obtained Au@MoS2 nanocomposite is used for the electrocatalytic hydrogen evolution reaction (HER) in acid medium, exhibiting excellent performance with a low overpotential of 178 mV at the current density of 10 mA/cm2, a small Tafel slope of 43.3 mV/dec, and excellent HER stability. This work paves a way for direct synthesis of TMD monolayers with high-concentration of unusual crystal phase for the electrocatalytic application.
Related Article
Cite this article

Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 2019, 12(6): 1301–1305 https://doi.org/10.1007/s12274-018-2212-8

Download citation