Research Article


2019, 12(5): 1009–1015


Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery

Qixin Chen1,2,3, Xintian Shao1,2,3, Zhiqi Tian3, Yang Chen3, Payel Mondal4, Fei Liu1,2, Fengshan Wang1, Peixue Ling1,2 (*), Weijiang He5 (*), Kai Zhang4 (*), Zijian Guo5, and Jiajie Diao3 (*)

View Author's information

1 School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
2 Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
3 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
4 Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
5 State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

Keywords: drug screening, mitochondria, lysosome, mitophagy, structured illumination microscopy
Full article PDF
Cite this article(Endnote)
Share this article

views: 299

Citations: 0

  • Abstract
  • References
  • Electronic Supplementary Material
Technology advances in genomics, proteomics, and metabolomics largely expanded the pool of potential therapeutic targets. Compared with the in vitro setting, cell-based screening assays have been playing a key role in the processes of drug discovery and development. Besides the commonly used strategies based on colorimetric and cell viability, we reason that methods that capture the dynamic cellular events will facilitate optimal hit identification with high sensitivity and specificity. Herein, we propose a live-cell screening strategy using structured illumination microscopy (SIM) combined with an automated cell colocalization analysis software, CellprofilerTM, to screen and discover drugs for mitochondria and lysosomes interaction at a nanoscale resolution in living cells. This strategy quantitatively benchmarks the mitochondria-lysosome interactions such as mitochondria and lysosomes contact (MLC) and mitophagy. The automatic quantitative analysis also resolves fine changes of the mitochondria-lysosome interaction in response to genetic and pharmacological interventions. Super-resolution live-cell imaging on the basis of quantitative analysis opens up new avenues for drug screening and development by targeting dynamic organelle interactions at the nanoscale resolution, which could facilitate optimal hit identification and potentially shorten the cycle of drug discovery.
Related Article
Cite this article

Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery. Nano Res. 2019, 12(5): 1009–1015

Download citation