Review Article

|

2019, 12(9): 2081–2092

|

https://doi.org/10.1007/s12274-019-2375-y

Nanoengineering of solid oxide electrochemical cell technologies: An outlook

Juliana Carneiro and Eranda Nikolla ()

View Author's information

Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, 48202, USA

Keywords: electrocatalysis, nanomaterials, solid oxide fuel cells, solid oxide electrolysis cells, exsolution, nanoparticles
Full article PDF
Cite this article(Endnote)
Share this article
Metric

views: 521

Citations: 0

  • Abstract
  • References
High temperature electrochemical energy conversion and storage technologies, such as solid oxide electrochemical cells (SOCs), have emerged as promising alternatives to mitigate environmental issues associated with combustion-based technologies. There has been increased interest for nanoengineering SOC electrodes to enhance their efficiency. A major drive is the necessity for improved electrode kinetics via optimization of electrocatalysts for different key reactions in these devices. In this perspective, we discuss the requirements for SOC electrodes and nanoengineering strategies employed to achieve flexibility in electrode materials. We focus on identifying ways in which these nanoengineered materials foster advancements in the SOC electrocatalytic activity, selectivity, and stability. We conclude by proposing approaches that would lead to more stable electrocatalytic nanostructures with high degree of control over the number and nature of active sites. These nanostructures would enable systematic kinetic studies that could provide an in depth understanding of the reaction mechanisms that govern performance, leading to valuable knowledge for designing optimal electrode materials.
Related Article
Cite this article

Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Res. 2019, 12(9): 2081–2092 https://doi.org/10.1007/s12274-019-2375-y

Download citation